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On the basis ofprevious modifications ofthe Zhuravlev and Ginstling-Brounshtein models, a 
generalization of kinetic diffusional models is proposed. With the assumption that the rate of the 
activation energy change during the reaction is inversely proportional to the reaction time. it has 
been shown that all diffusional kinetic equations in heterogeneous systems take the form 
F(ct) = KT n, where F(~) is a function of the degree of conversion ~t and K and n are constants 
related to the rate constant. 

In heterogeneous kinetics the total rate of reaction can be limited either by a 
chemical process or by diffusion. Most of the models devoted to the latter case lead 
to kinetic equations obtained under the assumption that the activation energy does 
not change during the process. However, to explain certain experimental results it 
has been necessary to assume that the activation energy does vary during the 
reaction process, as for instance in the reduction ofV205 by gaseous ammonia, or 
the oxidation of VO2 and V6013, as shown by Malecki et al. [2-5]. Another typical 
example is supplied by studies of the thermal decomposition ofCo30, , : Berthod [6] 
could not find an adequate kinetic equation, while Deshmukh et al. [7] proposed 
two different equations corresponding to different stages of decomposition. Finally, 
Malecki, Doumerc et al. were able to describe the kinetics of this reaction in the 
whole range of decomposition, using a unique equation derived from 
Ginstling-Brounshtein's model, in which the activation energy was assumed to 
change with the degree of decomposition [8, 9]. 

It is also worthwhile to note that Krbger and Ziegler previously modified 
Jander's equation, assuming that the coefficient of diffusion is inversely pro- 
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portional to the time, which can also result from a time-dependence of the 
activation energy. 

In fact, from the theoretical point of view, changes in activation energy during a 
reaction in which the rate-limiting step is diffusion are expected when one considers 
changes in chemical composition, in concentration of defects, as well as in the 
compactness and texture of the medium in which diffusion occurs. Up to now, 
however, no attempts have been made to work out a general method to account for 
these activation energy variations. 

In the present paper it will be shown that it is possible to modify and extend all 
existing models concerning reactions in which diffusion is the rate-limiting step, 
using a very simple phenomenological hypothesis taking into account the change in 
activation energy during the process. 

T i m e - d e p e n d e n c e  o f  a c t i v a t i o n  e n e r g y  

The kinetics ofreduction ofV205 by gaseous ammonia has been described by the 
following equation [2]: 

[ ( 1 - ~ ) - - 1 ' 3  112 = Kt  ~ (1) 

where a is the degree of conversion, Kand n being constants. The same equation has 
also been used for kinetic analysis of the oxidation of VO 2 and V6013 [3-5]. 

Analysis of experimental variations of the.degree of decomposition vs. time for 
the thermal decomposition of Co304 led to the equation [8]: 

1 - 2 ~ / 3  - (1 - 7)2;3  = Kt" ( 2 )  

Both Eqs (1) and (2) have been derived using the same simple phenomenological 
assumption concerning the time-dependence of the activation energy [1, 9]: 

dE(t) _ k~: (3) 
dt t 

where E ( t )  is the activation energy, t is the reaction time and k E is a constant. 
Equation (3) involves the assumption that the changing rate of E(t) tends to zero 

as t tends to infinity. Such a situation ought to be observed if, when the reaction 
approaches completion, the medium in which diffusion occurs tends to a steady 
state. 

It has been shown that, with the assumption of Eq. (3), Eq. (1) can be deduced 
from Zhuravlev's model [1], and Eq. (2) from Ginstling-Brounshtein's model [9]. 

We therefore propose here to extend this phenomenological approach to all 
existing diffusional kinetic models. 
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Extension of  diffusional kinetic models 

Generally, for reactions the rate of which is limited by diffusion, we may write: 

d~ 
- k "f(e) (4) 

dt 

where k is the rate constant andf (e )  is a function whose form depends on the kinetic 
model used. 

Assuming that k follows an Arrhenius law, we have: 

k = k o e x p ( - E / R T )  (5) 

where the symbols have their usual meaning. 
Integration of Eq. (3) gives: 

E(t )  = kE In t + const. (6) 

To determine the integration constant in Eq. (6), we take E0.5 = E(to.5), where 
to.5 corresponds to the time at which a = 0.5. 

Thus: 

E(t)  = Eo. 5 + kE In (t/to.5) (7) 

Introducing Eq. (7) into Eq. (5), we have: 

k = ko~o~./R" t -kr/Rr exp ( -  Eo.5 /RT)  (8) 

Taking into account Eq. (8), Eq. (4) becomes after integration: 

F(c 0 = Kt" (9) 
where: 

o 
(10) 

n = I - ( k E / R T )  

K = I kot~._5, exp ( -  E o . , / R T )  (11) 
n 

To eliminate to. s from Eq. (11), using Eq. (9) we may write: 

F(0.5) = Kt~. 5 

and 
n 

t~ = koo F(0.5) exp (Eo .5 /RT)  (12) 
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Substituting Eq. (12) into Eq. (11): 

~ko exp ( -  Eo 5/RT)I" 
K = f(0.5)[_ n - ~  (13) 

Integration of Eq. (4), assuming as in most existing models a time-independent 
activation energy (i.e. k~ = 0), would give: 

F(a) = kt (14) 

Finally, introduction of the time-dependence of the activation energy leads to 
equations similar to Eq. (9) and differing from Eq. (14) only by the presence of an 
exponent n in the right-hand term. 

Determination of time-dependence of activation energy 

Fitting experimental data into Eq. (9) leads to determination of the parameters K 
and n. Using Eq. (13) in the form: 

[- ( K 'l/"q ( k~ ) E~ (15) 

if the temperature-dependence of both parameters is known Eo.5 can be determined 
from a plot of the left-hand side of Eq. (15) vs. I/T. 

The a-dependence of the activation energy can be determined on the basis of Eq. 
(7). From Eq. (9) we have: 

to.~ = [ F ( O . 5 ) / K ] "  

t =  [e(a)lK]'/" 

and from Eq. (10): 

k e = ( 1 - n ) R T  

Introduction of the above equations into Eq. (7) gives: 

E(a) = E0.s+ (1 -n )RTln  F(~) (16) 
n F(0,5) 

The validity of Eq. (16) is obviously limited to the range of values of ~t within 
which the assumption corresponding to Eq. (3) can be applied. 

Previous determinations of the activation energy proposed in Refs 2, 3 and 8 did 
not assume for the activation energy any a priori given form of either time- 
dependence or a-dependence. They were based on the simple hypothesis that the 
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equation giving the reaction rate can be separated into two factors, only one of them 
depending on temperature and being taken as the rate constant obeying an 
Arrhenius law. It should be emphasized that, using the method described in the 
present paper, such an assumption is no longer required in the determination of 
E(~). 

Conclusions 

The following remarks may be made: 
On the basis of the above considerations it was possible to extend two diffusional 

models, which have been used to describe the kinetics of a solid-gas reaction [2-5] 
and of a thermal decomposition [8, 9]. 

Therefore, an approach extending the existing kinetic diffusional models to 
reactions in which the activation energy changes as the reaction proceeds seems to 
have a quite general meaning. 

The fitting of the experimental data into diffusional kinetic models (correspond- 
ing to Eq. (14)) should be carried out using logarithmic coordinates: log F(a) vs. 

log t (due to the form of Eq. (9)). If significant slope shifts with respect to 1 are 
observed, the possibility of a variation of the activation energy with the degree of 
conversion must be considered. 

We have already emphasized that the assumption of Eq. (3) has only 
phenomenological significance. However, the constant ke should be related as the 
reaction proceeds to some microscopic modifications of the medium in which 
diffusion occurs. 
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Zusammenfassung - -  Auf  Grund vorangegangener Modifikationen der Modelle von Zhuravlev und 

Ginst l ing-Brounshtein wird eine Verallgemeinerung der kinetischen Diffusionsmodelle vorgeschlagen. 

Mit der Annahme.  dab die Geschwindigkeit der ~nde rung  der Aktivierungsenergie w~ihrend der 

Reaktion umgekehrt  proportional der Reaktionszeit ist, wird gezeigt, dab alle kinetischen 

Diffusionsgleichungen f'tir heterogene Systeme die Form F(~t) = K T "  haben, wo F(~) eine Funkt ion des 

Konversionsgrades a und K und n mit der Geschwindigkeitskonstante in Beziehung stehende 

Konstanten sind. 

P e 3 m M e  - -  Ha ocnoaaHnn paHee MO/1HdpI4IIHpOBaHHblX Mo~le~e~ )Kypaa~e .a  , 

FnacT~aeHra-Bpayncdpnna flpeR.qo~enbl o 6 o 6 m e n a u c  KHHe'rHqOCKHe Rndp~by3noRHMe MO/IeJII, I. I]pe~,- 

no~araa,  ~xo U3MelteitHC cKopOCTH 3nepran arTnaattan so  ap~M~l pear,inn o6pax ,o  nponopunoHa.a- 

hHO BpeMeHn peaKu, n, 6btao nora3a .o ,  ,TO aa~ rexeporeHn•x CHCTeM ace ~lMd/~dpy3nonnble 

r,HeT~tqecrrle ypaenerm~ ~pnHmaamr anll F(ct) = K T " ,  r~le F(ct)--dpynrttMn creneu~ n p e a p a m e . n ~  ~, 

a K n n --- ~a.aflm'rcn FIOCTO~IHHblMH OTaOePITe,rlbUO KOHCTaHTbl cropocTH. 
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